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Abstract

Dietze Monteiro, Marina; Street, Alexandre (Advisor); Valladão,
Davi Michel (Co-Advisor). A Novel Semiparametric Structu-
ral Model for Electricity Forward Curves. Rio de Janeiro,
2020. 74p. Dissertação de Mestrado – Departamento de , Pontifícia
Universidade Católica do Rio de Janeiro.

Hedging against spot price volatilities becomes increasingly important in
deregulated power markets. Therefore, being able to model electricity forward
prices is crucial in a competitive environment. Electricity differs from other
commodities due to its limited storability and transportability. Furthermore,
its derivatives are associated with a delivery period during which electricity is
continuously delivered, implying on referring to power forwards as swaps. These
peculiarities make the modeling of electricity contract prices a non-trivial
task, where traditional models must be adapted to address the mentioned
characteristics. In this context, we propose a novel semiparametric structural
model to compute a continuous daily forward curve of electricity through
maximum smoothness criterion. In addition, elementary forward contracts
can be represented by any parametric structure for seasonality or even for
exogenous variables. Our framework acknowledges the overlapped swaps and
allows an analysis of arbitrage opportunities observed in power markets. The
smooth forward curve is computed by a hierarchical optimization problem able
to handle scarce data sets from low-liquidity markets. PCA results corroborate
our framework’s capability to explain a high percentage of variance with only
a few factors.

Keywords
Electricity forward curves; Smoothing; Principal component analysis.
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Resumo

Dietze Monteiro, Marina; Street, Alexandre; Valladão, Davi Michel.
Modelo Estrutural Semi-Paramétrico para Curvas Forward
de Eletricidade. Rio de Janeiro, 2020. 74p. Dissertação de Mes-
trado – Departamento de , Pontifícia Universidade Católica do Rio
de Janeiro.

A proteção contra a volatilidade dos preços spot torna-se cada vez mais
importante nos mercados de energia desverticalizados. Portanto, ser capaz de
modelar preços forward e futuros de eletricidade é crucial em um ambiente
competitivo. A eletricidade difere de outras commodities devido à sua capaci-
dade de armazenamento e transporte limitados. Além disso, seus derivativos
estão associados a um período de entrega durante o qual a energia é concedida
continuamente, o que implica em muitas vezes os contratos de eletricidades
serem denominados swaps. Tais peculiaridades tornam a modelagem de preços
de contratos de energia elétrica uma tarefa não trivial, onde os modelos tradici-
onais devem ser adaptados para atender às características mencionadas. Neste
contexto, foi proposto um modelo estrutural semi-paramétrico para obtenção
de uma curva forward de eletricidade contínua e diária através de critérios de
máxima suavidade. Ademais, os contratos forward elementares podem ser re-
presentados por qualquer estrutura paramétrica para sazonalidade ou mesmo
para variáveis exógenas. Nossa estrutura reconhece a sobreposição dos swaps
e permite uma análise das oportunidades de arbitragem observadas nos mer-
cados de energia. A curva forward é calculada por um problema de otimização
hierárquico capaz de lidar com conjuntos de dados escassos de mercados com
baixa liquidez. Os resultados do PCA corroboram a capacidade do modelo em
explicar uma alta porcentagem da variância com apenas alguns fatores.

Palavras-chave
Curvas forward de eletricidade; Suavidade; Análise de componentes

principais.
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1
Introduction

Electric power sectors were conceived as vertically integrated industries,
with all supply chain levels belonging to the same owner. However, since
the 1990s, many countries began a process of vertical and horizontal un-
bundling, where the competition was gradually inserted in generation and
retail while transmission and distribution usually remained as natural monopo-
lies. The deregulating development introduced competitive wholesale markets
and power derivatives contracts, such as forwards and futures, to meet the
agent’s needs on this new paradigm [1]. Therefore, understanding the drivers
of spot and derivatives prices and translating this knowledge into an analytical
framework is extremely important to the companies’ decision-making process
entering the electricity markets.

Limited storability and transportability make electricity a peculiar com-
modity. The former is bounded by reservoir volumes, whose growth slows down
due to environmental restrictions, and battery capacities, which remains an
economically infeasible solution. On the other hand, transportability is limited
by network constraints, such as transmission line capacities and transportation
losses [1]. Hence, electricity cannot be “carried” across time and space as other
commodities.

Those characteristics are imperative when explaining the behavior of
electricity spot and derivative prices. Electricity delivered at different times
and locations is perceived as distinct commodities, implying on spot prices
becoming dependent on supply and demand levels in every moment and loca-
tion [1]. Distinguishing weekdays and weekends, on-peak and off-peak hours,
and seasonal effects are of great relevance when dealing with power pricing.
Moreover, since it’s impossible to “carry” electricity over time, some forward-
looking information only affects a part of the forward curve. This echoes in
forward prices of different maturities having much lower correlation when com-
pared to other commodities. Also, as electricity cannot be economically saved
for future use, short-term contracts are not adequate for hedging long-term
risks in electricity markets [2], [3].

Another particularity of electricity is that it is a “flow commodity”. This
reflects on forward and future contracts with a definition of a delivery period
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Chapter 1. Introduction 12

(e.g., week, month, quarter, year) during which electricity is continuously
delivered, in contrast to other commodities whose derivatives are based on a
single delivery in a fixed date in the future. For this reason, electricity contracts
are usually referred to as swaps. Consequently, electricity forward curves are
composed of swaps with different delivery periods, resulting in an overlapped
structure. In this scope, two main approaches are applied to pricing derivatives,
including those in power markets. They are referred to as spot and forward
modeling.

Spot based methods define an analytical expression for the dynamics of
spot prices, and then a closed-form solution for forward prices are obtained
by some form of no-arbitrage conditions. The most representative framework
in this line of study is the Schwartz-Smith model, initially conceived for
single-delivery commodities. Its structure was adapted in [1] to incorporate
predictable components, such as seasonality and weekly patterns, while [4]
assimilated a jump-diffusion method to deal with spikes observed in electricity
spot prices. This was also addressed in [5], [6], [7], [8] and [9].

In contrast, forward based methods delineate the forward curve’s stochas-
tic representation directly and are usually conceived under the Heath-Jarrow-
Morton (HJM) framework, originated in the fixed income market. The HJM
scheme is built under the premise of instantaneous forward prices, which means
its application to electricity contracts is not straightforward. Its dynamics are
limited by a stochastic process governed by independent Brownian motions
associated with volatility terms. Therefore, assuming a Gaussian distribution
is intrinsic to its preliminary definition. Two distinct ways to develop HJM
models for power markets were suggested in [10]: the first disregards over-
lapped contracts, i.e., only a subset of traded swaps with mutually exclusive
delivery periods are considered, since the no-arbitrage condition is no longer
an issue. The second and most used alternative involves applying HJM on es-
timated electricity forward prices, named in our study as elementary forward
contracts. Those derivatives are not observed in the electricity market and
must be derived by smoothing techniques.

The computation of elementary forward contracts is usually based on
the maximum smoothness criterion, originated in fixed income markets [11].
It aims to find the forward prices that reconstruct the swap contracts with
the characteristic of being the smoothest function over the maturities under
analysis. The two most fundamental formulations observed in the literature
of electricity pricing comes from [12] and [10]. In the former, a bottom-up
model estimates prices used to delineate the seasonality observed in power
markets. Then, a bi-objective quadratic optimization problem is defined, where
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Chapter 1. Introduction 13

the squared errors between the elementary prices and the results from the
bottom-up model are minimized, in addition to the total curvature of the non-
parametric representation of elementary contracts (maximum smoothness).
The optimized prices are constrained by bid and ask observed in the market.

The methodology proposed in [10] described elementary prices as a
sum of a seasonality function and a residual term. Different from [12], the
maximum smoothness criterion was imposed on the residuals instead of directly
on forward prices to better retain seasonal patterns. Polynomial splines of
order four parameterized the residuals. Two different optimization problems
were conceived, differing only in the constraint that relates the optimized and
observed prices: the first is analogous to the one in [12], where prices were
constrained by bid and ask levels; the second matched the optimized swaps
with closing prices.

Following the smoothing process, Principal Component Analysis (PCA)
is usually executed on a data set computed from elementary forward prices to
help determine the number K of Brownian motions and the shape of volatility
terms, necessary for practical applications of HJM. PCA was performed in [2]
on two sets built from elementary prices from NordPool, and three components
explained 80%-83% of the total variance, depending on whether it refers to
price differences or returns. In [10], PCA was also performed on a data set
from more updated NordPool swap prices, and the authors found similar
conclusions, with three factors being able to explain 70% of the total variance
of log returns. Both studies reported that ten factors were needed to describe
95% of the total variance. Those values are significantly lower when compared
to the ones from the US copper market in [13]. Since PCA is a step in applying
HJM on electricity swap prices, the dimensionality reduction must be done
under a data set coherent to the problem formulation. As we will show later,
this condition might hide higher percentages of total variance explanation.

In this context, we propose a novel semiparametric structural model
for electricity forward curves. The semiparametric nomenclature refers to the
representation of elementary forward contracts as a sum of a parametric term,
that explains the price behavior, and a non-parametric model for the error.
From the parametric side, our framework is flexible as it allows representing
elementary price linearly dependent on seasonal effects as well as other
explanatory variables. From the non-parametric side, our framework fits the
scope of smoothing techniques, but with the novelty of considering maximum
smoothness both in maturity and time dimensions. For estimation purposes,
a reduced-form model is derived by embedding the parametric structure of
the elementary contract into the non-arbitrage relationships with the observed
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Chapter 1. Introduction 14

swap prices. Different from [12] and [10], the expression that relates swaps and
elementary contracts is written in terms of time to maturity and not delivery
dates. Besides being imperative when performing data analysis, describing
contracts in terms of time to maturity allows us to introduce the smoothing
in the time dimension and not only in maturity, as is done in the literature.
This is important when dealing with low-liquidity markets, as will be discussed
later in this work.

Furthermore, instead of constraining the optimized prices within the bid
and ask limits or fitting it perfectly with observed swaps, we allow a mismatch
between estimated and observed prices. This is crucial to completely assimilate
overlapped contracts, which is an inherent condition in flow commodities. All
smoothing techniques mentioned so far proceed after manipulating the original
set of settled assets to bypass infeasibilities that could occur otherwise. In our
proposed framework, overlaps are not an issue and are essential in estimating
elementary forward prices. Also, the mismatch has an interesting interpretation
of arbitrage opportunities in the market.

The estimation procedure of elementary prices consists of a hierarchical
approach, where the non-arbitrage condition is prioritized. Then, the model’s
parameters are estimated, followed by the computation of elementary con-
tracts. In this last stage, two formulations were proposed: one with the max-
imum smoothness only on the maturity dimension and the other with the
incorporation of smoothness in time to help when dealing with scarce data
sets. Here, the maximum smoothness criterion is applied to the residual term,
following [10].

Principal component analysis of the smoothed residuals generated im-
pressive results. We were able to explain more than 97% of total variance with
only three components and interpretable factor loading shapes for the Brazil-
ian and Nordic power markets. These values stand out from those found in the
literature.

The remainder of this dissertation is organized as follows. Chapter 2
presents a literature review on the most used methods in modeling electricity
derivatives. Chapter 3 presents our novel semiparametric structural model,
followed by the development of the hierarchical estimation procedure for
elementary forward contracts in Chapter 4. Chapter 5 refers to the applications
of our framework in the Brazilian and Nordic power markets. Finally, Chapter
6 presents the conclusions while Chapter 7 defines our next steps, focusing on
the extension of our framework for probabilistic forecasting purposes.
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1.1
Objective and Contributions

In this work, we develop a semiparametric structural model for electricity
forward curves that acknowledges forward prices drivers, such as seasonality
and any related explanatory variable, and its smooth behavior through time.
We are able to obtain a continuous daily forward curve that makes use of over-
laps through a hierarchical estimation procedure with three main steps: com-
putation of arbitrage-free swap prices, parameters estimation and, finally, the
gathering of elementary forward prices. We extend the maximum smoothness
criterion to address scarce data challenges in low-liquidity markets. Finally, we
present a dimensionality reduction step based on principal components analy-
sis, which is a more suitable approach for forecasting purposes. Thefefore, our
main contributions are:

1. Establish a flexible semi-parametric representation for elementary for-
ward prices, where any seasonal structure or exogenous variables can be
linearly treated;

2. Account for arbitrage opportunities in the power market and use this
information as an outlier detector;

3. A hierarchical estimation procedure able to handle scarce data sets;

4. We show that more than 97% of the residuals variability can be explained
by only three principal components for both the Brazilian (BBCE),
98.4%, and Nordic (NordPool), 97.4%, electricity markets. It is important
to note that previous studies show that at least 10 components are needed
to explain 95% of the total variance.
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2
Literature Review

The literature review will be divided into two methodologies that we
refer to as spot and forward modeling. While the forward modeling directly
characterize curve dynamics, the spot modeling approach specify a process
for spot prices and then, under simplifying assumptions, derive forward and
future price dynamics based on no-arbitrage principles. These two are the main
approaches when dealing with derivatives pricing, in particular of electricity
markets [14].

2.1
Spot Modeling

Spot based methods define an analytical expression for spot price dynam-
ics, and then a closed-form solution for forward prices is usually obtained by
non-arbitrage conditions. The most common studies in this research line refer
to the Schwartz-Smith framework [15], conceived initially for single-delivery
commodities, e.g., oil future prices. The authors define the spot logarithm dy-
namics as a sum of two stochastic factors defining the short-term deviations
in prices (Ornstein-Uhlenebck process) and the equilibrium price levels (Brow-
nian motion process). After that, the forward prices are assumed to follow
the conditional expectation of spot prices in the contract’s delivery dates. Ap-
plications of the Schwartz-Smith framework in the electricity market mostly
vary according to the number of factors considered, the inclusion of seasonal
patterns, and the treatment of price spikes.

In [1], the authors developed one and two-factor models based on the
Schwartz-Smith framework for the NordPool market. They evaluated the im-
portance of the predictable components in electricity spot prices and how they
reflect on derivative valuation. This is important due to the limited storability
of electricity, where the current spot level is not a good approximation for
understanding the long-term price dynamics. Instead, we should estimate the
expected value of spot prices during the swap’s delivery period and, thus, the
systematic comportment of spot prices through time is indispensable. The as-
sessed models differ with respect to the stochastic factors assumed for the spot
price dynamics and the deterministic function, representing the predictable
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Chapter 2. Literature Review 17

components. The latter was divided into two terms: the first addressed the
price level differences between weekdays and weekends through a dummy vari-
able; the second characterized seasonality with a cosine function or dummies
for each month. Since this was an early study, insufficient data was an issue.
Therefore, the estimation of seasonal adjustment parameters used historical
spot price data and of the remaining parameters, the available forward prices.

While [1] accounted for the mean-reverting nature of electricity, they
failed to report the price spikes inherent to the electricity sector. Since the
underlying commodity cannot be economically stored, electricity bought in the
spot market must be used almost immediately once purchased. Typical hedging
strategies that involve holding specific amounts of the commodity are not
possible. In addition, low elasticity in the short-term demand also contributes
to price spikes. [4] aims to address the limitations of the previous study by
capturing mean reversion, jumps, and seasonality. The model’s parameters
were also estimated with a hybrid approach using both spot data and current
forward prices of England and Wales markets. The former was used to calculate
the seasonality component, the rolling historical volatility, the mean reversion
rate, and the jumps’ frequency and standard deviation. The latter was applied
in the market price of risk estimation. Logarithmic returns composed the
data set, and a Fourier series of order five described the seasonal component.
The authors concluded that the evidence of fat tails in the distribution of
electricity returns, resulting from spikes and time-varying volatilities, indicates
a possibility of departing from the Gaussian assumption in such models.

Other studies intended to face the price spikes in the electricity spot se-
ries. In [5], three different mean-reverting jump-diffusion models for the volatile
behavior of power prices were proposed by incorporating either multiple jumps,
regime-switching, or stochastic volatility. [6] suggested using mean reversion
coupled with upward and downward jumps, with the direction of the jumps
depending on the price level. So, the chances of a negative jump being followed
by a positive jump and vice-versa are higher. The same was defended by [7]
and [8]. [6] aimed to find the best model for kurtosis by filtering raw price data
using different thresholds and selecting the one leading to the best-calibrated
kurtosis.

Studies incorporating jump-diffusion methods usually writes the under-
lying stochastic variable as a sum of a mean reversion drift term, a constant or
time-dependent volatility term, and a pure jump process, modeled by a homo-
geneous Poisson distribution with a constant intensity λ [16]. However, this is
an unrealistic representation as the probability of price spikes differs between
different seasons (spike clustering). To bypass this drawback, researchers used
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Markov Regime-Switching (MRS), representing how the stochastic variables
follow multiple processes or regimes, switching between them according to an
unobserved Markov chain. A class of general models composed of mean rever-
sion, seasonal adjustment, time-varying volatility, and jumps were developed in
[9]. The models were tested in different markets, such as Argentina, Australia,
Canada, New Zeland, Netherlands, NordPool, Spain, and PJM. Nevertheless,
their goal was to model just the spot prices and not present a closed-form
solution for forward prices.

In [3], no stochastic process was considered for electricity spot prices.
Instead, the authors wrote the spot price’s logarithm as a linear combination
of the logarithmic forward prices of fundamentals, such as fuel, emission
allowances, and imported electricity. Hence, forward prices are the rational
expectation about the spot price at the delivery time, discounted with the risk-
free interest rate and risk premium, described as a function of time to maturity.
Weekly swap prices from NordPool, with the duration of one year and time to
maturity greater than one year were modeled. The authors demonstrated that
the forward price dynamics differ from the spot prices when the delivery is
considerably far. As the delivery period approaches, long-term and spot prices
become more similar. All variables (electricity and fundamental’s forward
prices) were considered endogenous and function of their past values and past
values of the other variables on a Vector Autoregressive Model (VAR) with a
lag equal to two. Initially, there was some remaining residual autocorrelation
structure. The authors found out that aluminum prices were a determinant
factor in electricity prices during the period under analysis, being added to the
framework. Also, auxiliary dummies accounted for shocks. Both interferences
helped improve the results, and two stationary long-run relationships were
found. Moreover, the risk premium dynamics in the long-term electricity
forward from NordPool is relatively low and could be considered constant.

2.2
Forward Modeling

Studies under the forward modeling paradigm are usually based on the
Heath-Jarrow-Morton (HJM) framework [17] originated in the fixed income
market. It directly models the evolution of instantaneous forward rates given
an initial condition and a stochastic process for its subsequent movements,
considering no-arbitrage assumptions. HJM formulations are characterized
as multifactor models. A number of K independent factors, represented by
Brownian motions, determine the dynamics of the entire forward curve and are
associated with a volatility term commonly written as a function of the trading
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and maturity dates. It is mandatory for practical applications to determine the
number K of factors and the shape of the volatility terms. Principal Component
Analysis (PCA) plays an essential role in this process, which will be highlighted
later in this chapter.

The HJM framework is built under the premise of instantaneous forward
price, which means its application to electricity contracts is not straightfor-
ward. When modeling swap settlements, specific conditions must be satisfied
to guarantee an arbitrage-free dynamic [10]. For instance, in a power market
as NordPool, swaps with the delivery period of a week, month, quarter, and
year are available. One could buy three monthly contracts, exactly covering a
quarterly asset. Furthermore, a swap to be delivered during a year could also
correspond to four quarterly contracts for the same year. This clearly empha-
sizes how the products must be connected to avoid arbitrage opportunities.

In [10], the authors discussed how the direct implementation of HJM
in swap prices leads to intractable models. This is due to the non-arbitrage
relations exemplified previously, since a swap contract defined for a specific
delivery period yields the same payoff of a portfolio of smaller swaps with
their delivery period resulting from the former’s decomposition. To circumvent
those obstacles, the authors suggested two different approaches to develop HJM
models for electricity prices. The first disregards overlapped contracts, i.e.,
the HJM framework only considers a subset of traded swaps with mutually
exclusive delivery period. Therefore, no-arbitrage condition is no longer an
issue. The second approach involves applying HJM on estimated electricity
forward prices, named in our study as elementary forward contracts. Those
derivatives are not observed in the electricity market and must be derived
by smoothing techniques that estimate the underlying assets based on the
negotiated and available prices. This is the most common tactic used by the
authors in forward modeling, but it is essential to be aware that the estimated
data is intrinsically dependent on the implemented algorithm.

Hence, the remainder of the literature review regarding the forward
modeling paradigm is divided into two parts: the first analyses the smoothing
techniques’ current status. The second shows how the elementary forward
prices are considered in the HJM framework, highlighting the results of
Principal Component Analysis.

2.2.1
Smoothing

The calculation of elementary forward contracts is usually a result of the
maximum smoothness criterion. The concept was first used in fixed income
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markets by [11], and it aims to find the forward prices that reconstruct the
swap prices with the characteristic of being the smoothest function over the
maturities under analysis. A curve’s smoothness is related to its curvature,
which means that these criterion’ objective function is to minimize the total
slope variation across maturities. Due to the intense seasonal patterns of
electricity prices, this technique’s application in this context is coupled with
a seasonal adjustment step to address the particularities of the underlying
commodity.

In [12], the authors modeled high-resolution forward price curves by com-
bining information of the observed bid and ask prices with information from
forecasts generated by bottom-up models. The calculation of elementary for-
ward contracts was obtained by a quadratic bi-objective optimization problem.
The first term aims to minimize the difference between the forward prices and
the bottom-up model results, while the second refers to the maximum smooth-
ness criterion and is weighted by a value λ. Here, bottom-up outcomes try to
reproduce the seasonal behavior of electricity prices. In addition, the prices
recovered by elementary contracts are constrained by the bid and ask levels
observed in the NordPool market. If the parameter λ = 0, no smoothing is per-
formed. However, if λ → ∞, the shape of the seasonality of electricity prices
is indifferent. The framework quality was evaluated by its ability to price non-
traded maturities compared to a model with only the maximum smoothness
criterion and to a simple functional relationship along the maturity dimension
written as a truncated Fourier series. The proposed model performed better
than the suggested benchmarks.

The smoothing techniques developed in [10] described elementary prices
as a sum of a seasonality component and an error term. Different from [12],
the maximum smoothness criterion was imposed on the residuals instead of
directly on forward prices to retain seasonal patterns better. Polynomial splines
of order four parameterized the residuals. Two different optimization problems
were conceived, differing only in the constraint that relates the optimized and
observed prices: the first is analogous to the one in [12], where prices were
constrained by bid and ask levels; the second matched the optimized swaps
with closing prices.

The seasonality is an exogenous prior function. Its parameters are fitted
using the least square approach, usually to reproduce the seasonal dynamics
of spot prices. The spline specification and the maximum smoothness for
residuals ensure the fit to the market’s observed prices. The authors tested
the effect of the choice of seasonal functions on the smoothed forward curve
for the NordPool data set, using the formulation with the constraint of the
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bid/ask boundaries. Three different specifications were tested: no seasonality,
a trigonometric function fitted into spot prices [1], and spot prognosis from a
bottom-up model, similar to [12]. The impact of the distinct specifications on
the shape of the elementary forward curve varies with maturity: all seasonality
functions resulted in similar forward curves for maturities until one year; in
contrast, longer maturities are strongly affected by the shape adopted, and
incorporating seasonality becomes imperative to outline the estimated forward
prices.

After computing the elementary forward contracts, they suggested two
ways of constructing historical prices that have no overlaps: one of fixed-
delivery and other of average-based forwards. The latter is composed of
weighted averages between the elementary contracts composing the swaps’
delivery period. For instance, suppose a weekly contract whose delivery begins
in 7 and ends in 14 days. The correspondent average-based price will be the
weighted average between elementary forwards with maturities between 7 and
14 days. To guarantee no overlaps, they chose each swap’s beginning date
as the next day after the ending of the previous contracts. For the fixed-
delivery forwards, their maturities are chosen as mid-points of the average-
based forwards.

In [18], the authors proposed a novel method based on a constrained least
square optimization procedure where the level of futures and historical spot
prices are simultaneously taken into account in a joint optimization approach.
The elementary prices are modeled by one trigonometric spline, which accounts
for both seasonality and residual terms. For a more in-depth analysis of the
proposed method, refer to [18].

Smoothing techniques are important to price unobserved elementary for-
ward contracts and extract information about the volatility behavior of prices,
which will be discussed next. Evaluating the results from those techniques is
not straightforward since there are no observed elementary prices to be directly
compared to. Furthermore, the estimated prices depend on the optimization
framework’s assumptions, such as a parametric representation for the residu-
als, the chosen seasonality shape, and the application of maximum smoothness
criterion directly on forward prices or on residuals. Therefore, the smoothing
framework should be assessed according to its application goal.

2.2.2
Principal Component Analysis

As mentioned previously, most applications on forward modeling based
on HJM perform some variation of the maximum smoothness criterion to
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calculate elementary forward contracts, which have no overlaps and can deal
with some of the swaps implications. Following this step, PCA is usually
executed to find common factors that explain the variance of the data under
analysis. Therefore, the two pieces of information necessary on a forward
modeling framework can be determined: the number of factors K is defined
based on the percentage of variance explained by the components, and the
shape of the volatility terms associated to the Brownian motions are inferred
from the factor loadings.

In [2], the authors performed principal component analysis on two sets
built from the smoothest function that prices all traded assets within the
bid/ask spread of the NordPool market. The authors created fixed-delivery
sets on both price differences and price returns. The analysis comprehended
21 vertices, 18 of them representing maturities up to one year, and three in the
second year. Some interesting statistical analyses showed that the standard
deviation sharply falls with time to maturity, which is intuitive since the
curve’s short-term is more affected by spot price variations. The inadequacy
of Gaussian distributions was also highlighted due to the high kurtosis and
positive skewness observed in the data set.

The first component from PCA explained between 68%-70% of the total
variance, depending on whether it refers to price differences or returns. Adding
one more factor increased the percentage to 75%-78% while incorporating a
third allowed the explanation of 80%-83%. The authors acknowledged that, to
account for 95% of total variability, more than ten factors would be necessary.
Those values are significantly lower when compared to those obtained from
the US copper market in [13]. Due to the limited storability of electricity, the
term structure common to all maturities represents 75% of the total variance,
while the remaining 25% are specific to each maturity. The first two factors
responsible for the dynamics underlying all curve have well-know behaviors in
the literature. The first factor falls as the maturity increases and stabilized
after one year (level factor), and the second presents different signals between
the short and long ends of the curve (slope or steepness factor).

In [10], the authors extended the previous work by performing PCA on
an average-based data set from more updated NordPool swap prices. Their
conclusions were similar to those from [2], with three factors being able to
explain 70% of the total variance of log returns. Ten factors were also needed to
describe 95% of the total variance. A different analysis was made regarding the
separate evaluation of individual market segments (weekly, monthly, quarterly,
and yearly swaps). Three factors explained a higher share of total volatility for
each sector (96% for monthly, 80% for quarterly, and 100% for yearly swaps).
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Furthermore, the factor loadings suggested the three typical level, steepness,
and curvature profiles observed in interest rates, promoting an interpretability
quality. Finally, examining the correlation matrix of normalized electricity
future prices returns, the authors concluded that contracts with different
delivery periods have correlations lower than those close together.

2.3
Discussion

Spot based methods allow for an intuitive interpretation of the electricity
forward curve dynamics. They have the flexibility to account for a hybrid
estimation, where historical spot and forward prices might be applied when
calculating the model’s parameters since an explicit relation between both
markets is the core of this methodology. Inputting observed characteristics
of electricity spot prices is also straightforward, as well as their theoretical
interpretation. Nonetheless, its advantage is also a drawback. Although spot
prices can be easily manipulated through its mathematical equation, factors
affecting only forward prices are not as easy to be included.

In contrast, forward modeling allows the direct description of forward
price dynamics without specifying an explicit relationship with spot prices.
Nevertheless, it depends on a higher amount of traded prices on the market
because of this approach. Also, since HJM is built under the premise of
instantaneous forward contracts, it is necessary to disregard overlaps or build a
new data set composed by smoothed elementary prices. Although the forward
curve is directly portrayed, incorporating exogenous structures on the HJM
representation might not be straightforward.

Both Schwartz-Smith and HJM, which inspires most spot and forward
modeling, respectively, assume normality in some step of its development.
However, empirical results show excess kurtosis and positive skewness on
electricity prices, indicating that Gaussian distributions are not the most
suitable choice to represent them.
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3
Proposed Semiparametric Structural Model

In this work, the proposed framework is based on two mathematical
representations governing pricing dynamics. Therefore, this section starts with
the algebraic characterization of arbitrage-free swap prices followed by the
structural model for swap prices.

3.1
Arbitrage-free Swap Prices

Elementary forward contracts are unobserved derivatives of the same
granularity and, as a consequence, without overlaps. A more intuitive under-
standing is to interpret them as smaller pieces of the original swap, resulted
from the breaking of the delivery period into shorter fragments.

In a competitive power market, negotiate a swap contract, defined by a
continuous delivery period, should be equivalent to trade multiple elementary
contracts for the same interval of time, i.e., the arbitrage opportunities should
be close to zero. Equation (3-1) defines the arbitrage net present value (NPV):

∆t,i =
ht,i+∆Tt,i∑

j=ht,i

Ft,i − ft,j

(1 + r)j
, ∀t ∈ T ,∀i ∈ Nt (3-1)

Where ft,j is the price of the daily elementary forward contract (not
observed in the market) on the date t, to be delivered j days ahead . Ft,i is the
observed price of the swap i on the same date t and the interval [ht,i, ht,i+∆Tt,i]
set its delivery period.

The non-arbitrage condition is the most important premise adopted on
financial models, and it establishes that agents shouldn’t be able to make a
risk-free profit. In a market with the absence of arbitrage, the value of ∆t,i

would be zero, but that is unrealistic. A simple manner of handling arbitrage-
free swap prices consists of modeling only contracts without overlap. However,
as we’ll show in the next subsection, elementary forward contracts are state
variables inferred from the settled swap prices. Therefore, the intersection
between delivery periods would be relevant information in the estimation
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procedure. Hence, instead of disregarding overlaps, our arbitrage-free swap
prices are obtained by opening the summation in (3-1) and writing Ft,i as:

Ft,i =
ht,i+∆Tt,i∑

j=ht,i

ft,j
(1 + r)−j

Jt,i

+ ζt,i, ∀t ∈ T ,∀i ∈ Nt, (3-2)

where Jt,i = ∑ht,i+∆Tt,i

j=ht,i
(1 + r)−j and ζt,i = ∆t,i

Jt,i
is the arbitrage level in prices.

Expression (3-2) highlights how swaps are the sum between a portfolio of
elementary contracts for its delivery period, which are the arbitrage-free swap
prices, and the arbitrage levels. In addition, it’s easy to notice the absence of
arbitrage when there are no overlaps, since each Ft,i can be written as a linear
combination of different sets of elementary contracts.

3.2
Structural Model for Swap Prices

Structural models are time series frameworks that acknowledges their
dynamic evolution through time. This flexibility is related to the presence of
unobserved variables, called state variables, that act as time-varying coeffi-
cients and are estimated from the series under analysis. The definition of a
structural model is based on a state space scheme, which in our proposed
framework is described as:

Ft,i =
ht,i+∆Tt,i∑

j=ht,i

ft,j
(1 + r)−j

Jt,i

+ ζt,i, ∀t ∈ T ,∀i ∈ Nt (3-3)

ft,j = xT
t,j β + ε(t, j), ∀t ∈ T ,∀j ∈ J . (3-4)

Expression (3-3) is the measurement equation and translates the relation
between the modelled time series (Ft,i) and state variables (ft,j). (3-4) is the
transition/state equation, where the time evolution of the state variable is
defined. It is important to say that usual state space models also have simple
error term. Here, ζt,i = ∆t,i

Jt,i
is a weighted error accounting for the present

value discount factor within each contract delivery period. Furthermore, in
the expression of ft,j, the residual ε(t, j) is a function of time and maturity,
and it is not the regular uncorrelated errors considered in state space models. In
this study, we do not assume a parametric form for ε(t, j). Rather, we assume
that function ε belongs to the set, S, of smooth functions.

Equation (3-4) characterizes the dynamics of elementary forward prices.
Besides the residuals ε(t, j), any necessary structure could be inserted in the
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vector xt,j: calendar effects, such as the impact of weekdays and weekends
on prices; seasonality through dummy variables or sine and cosine functions;
trends; and exogenous variables. Regarding the latter, it is crucial to have a
powerful statistical model able to generate scenarios for both the estimation
and probability forecasting steps. The vector β defines the associated coeffi-
cients to be estimated.
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4
Estimation Procedure

The estimation procedure defined in this chapter aims to calculate the
elementary forward prices induced by swap contracts traded on electricity mar-
kets. The proposed semiparametric structural model presented so far is based
on the relationship between the swap prices Ft,i and the elementary contracts,
ft,j. To address the challenge of estimating a semiparametric structural model,
we propose a hierarchical approach based on the following steps. We first es-
timate arbitrage-free prices Yt,i to prevent that the next steps artificially play
with arbitrage levels through time to better adjust the parametric and non-
parametric parts of the model. Then, we derive a reduced form to estimate the
parametric part of the model, β. With fixed values of β, we estimate the non-
parametric residuals, ε(t, j), via maximum smoothness in time and maturity
dimensions.

Additionally, it’s reasonable to argue that, if ζt,i has a high absolute
value, the correspondent settled price is a strong candidate of abnormality, as
it diverges too much from the average behavior. If an arbitrage threshold is
pre-defined, swap prices Ft,i with an associated ζt,i higher than the established
limit could be disregarded.

The following subsections detail the steps mentioned above.

4.1
Computing Arbitrage-Free Prices

Let arbitrage-free prices be:

Yt,i = Ft,i − ζt,i, ∀t ∈ T ,∀i ∈ Nt. (4-1)

To compute Yt,i, we must calculate the values of ζt,i. To do that, we use the
following optimization problem for each trading date:

min
ζ,f

θ (4-2)

s.t. Ft,i =
ht,i+∆Tt,i∑

j=ht,i

ft,j
(1 + r)−j

Jt,i

+ ζt,i, ∀i ∈ Nt (4-3)

θ ≥ |ζt,i|, ∀i ∈ N̂t, : γi, (4-4)
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which aims to minimize the infinity norm of ζt. To avoid degeneracy (multiple
solutions for ζ) in the infinity-norm minimization, we propose the iterative
process:

Algorithm 1 Calculate arbitrage-free prices
for all t ∈ T do
Initialize N̂t = Nt

while |N̂t| > 0 do
Solve: (4-2)–(4-4)
Find: i∗ ∈ arg maxi∈N̂t

γi

Add: Constraint ζt,i = ζt,i∗ for i = i∗

Update: N̂t = N̂t \ {i∗}
end while

The infinity norm is justified on the need to assess minimum level of
arbitrage opportunities before estimating the model.

4.2
Reduced Form Model

Embedding (4-1) and (3-4) in (3-3), we obtain the following reduced form
model:

Yt,i = X t,iβ + ηt,i, ∀t ∈ T ,∀i ∈ Nt, (4-5)

where,

X t,i =
ht,i+∆Tt,i∑

j=ht,i

xT
t,j

(1 + r)−j

Jt,i

(4-6)

ηt,i =
ht,i+∆Tt,i∑

j=ht,i

ε(t, j)(1 + r)−j

Jt,i

(4-7)

Equation (4-5) illustrates how the reduced-form model becomes as simple
as a linear regression. X t,i is a vector with the weighted average of each
independent variable during the swap delivery period. They are deterministic
values for each trading date t and contract i. The error term ηt,i refers to
the parcel of the swap price not explained by the structure introduced on the
elementary forwards. They are a weighted average of the residuals ε(t, j) during
the swap delivery period.

The calculation of coefficients β is directly related to the error term, ηt,i,
as observed in (4-5). Therefore, the values of β are estimated by the ordinary
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least square (OLS) problem, as given by:

β∗ ∈ argmin
β

∑
t∈T

∑
i∈I

(
Yt,i −X t,i β

)2
. (4-8)

4.3
Maximum Smoothness

In the last stage of our estimation procedure, we estimate the non-
parametric part of our model for fixed values of β∗. This requires the definition
of some measure that drives the choice of the most appropriate function ε(t, j)
to compose the elementary forward contracts.

Previous studies regarding the modeling of electricity forward curves
apply the maximum smoothness criterion on the maturity dimension j, either
directly on the elementary contracts or on their residuals [12], [19]. These
criteria aim to minimize the total curvature of a function given by the sum of
the second derivatives in the maturity dimension. Assuming that (3-4) specifies
elementary prices, [10] states that imposing a smooth behavior on the error
term guarantees that the structure of ft,j is better retained. So, among all the
smooth functions in S, we select ε(t, j) resulted from the maximum smoothness
assumption. Here, no premise about the parametric representation for ε(t, j)
is made. Instead, we explicitly refer to the elements of its image, hereafter
εt,j. So, we define the maximum smoothness problem used to estimate εt,j as
follows:

min
ε

∑
t∈T

∑
j∈Ĵ

(εt,j+1 − 2εt,j + εt,j−1)2 (4-9)

s.t. Yt,i = X t,i β
∗ +

ht,i+∆Tt,i∑
j=ht,i

εt,j
(1 + r)−j

Jt,i

, ∀t ∈ T ,∀i ∈ Nt, (4-10)

where Ĵ = {2, 3, . . . , J − 1}. It’s worth mentioning that problem (4-9)–
(4-10) could be solved for each trading period separately, since the vector
of coefficients β∗ is fixed.

4.4
Generalized Maximum Smoothness for Scarce Data Sets

As previously mentioned, (4-9)–(4-10) can be decomposed into smaller
problems for each trading date. The elementary contracts with maturities
that belong to the intervals {[ht,i, ht,i + ∆Tt,i]}i∈Nt , i.e., the delivery period
of the negotiated contracts, will be based on both the swap price level and the
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maximum smoothness criterion. Nevertheless, scarce data can jeopardized the
maximum smoothness process presented before.

To clarify this aspect, assume that, on a trading date of August/20,
monthly swaps with delivery for September/20 and November/20 were traded.
As the objective function (4-9) is defined for all maturities j ∈ Ĵ , it’s
imperative to calculate the residuals εt,j that will compose the swap for
October/20, which has no settled price defined but links both negotiated
contracts. In those cases, when there are no prices to support the choice of
εt,j and, consequently, ft,j, the maximum smoothness criterion connects the
maturities that constitute the available and missing swaps. This highlights
one relevant feature of our framework, it generates an interpolation effect.

Now, consider a more critical situation. Suppose that only the monthly
contract for September/20 was traded on a date t, and we want to infer the
prices that would have been settled for October/20 and November/20. As the
objective function minimizes the slope variation on the maturity dimension,
the residuals εt,j for j > ht,i + ∆Tt,i, where i is the swap for September/20,
will be estimated to maintain the final slope of the maturities composing the
traded contract. This means that, if εt,ht,i+∆Tt,i

increases, decrease or persist
the same, this trend will be kept indefinitely for all higher maturities.

In similar cases, it’s reasonable to assume that the information of the
forward curves for adjacent periods (the days before and after) could be used
to interpolate the elementary prices in the presence of missing data. This is
especially important when dealing with data from low liquidity markets, such
as Brazil. Therefore, we reformulate (4-9)-(4-10) as a bi-objective optimization
problem that minimizes the linear combination of smoothing over time and
maturity.

min
ε

λ1

∑
t∈T

∑
j∈Ĵ

(εt,j+1 − 2εt,j + εt,j−1)2

+

λ2

∑
t∈T̂

∑
j∈J

(εt+1,j − 2εt,j + εt−1,j)2

 (4-11)

s.t. Yt,i = X t,i β
∗ +

ht,i+∆Tt,i∑
j=ht,i

εt,j
(1 + r)−j

Jt,i

, ∀t ∈ T , i ∈ Nt (4-12)

The set T̂ is equal to {2, 3, . . . , T − 1}. Parameters λ1 and λ2 must be
fixed a priori. If λ2 = 0, solving (4-11)-(4-12) is equal to (4-9)-(4-10).

DBD
PUC-Rio - Certificação Digital Nº 1821331/CA



5
Case Studies

In this chapter, we present two case studies that illustrate our structural
model’s estimation. To highlight the contributions of our work, we consider
the traded assets of two different power markets:

1. Nordic (NordPool): Its power market is consolidated and, therefore, is
analyzed in multiple studies regarding electricity forward curve model-
ing [2][12][19]. We’ve contemplated M+1,...,M+6,Q+1,...,Q+8,Y+1,Y+2
and Y+3 closing prices from 2013 to 2018. In the Y+1 time series, six
trading days with prices equal to zero were observed. We’ve assumed that
those negotiations did not occur since these are unreasonable prices. Be-
cause it represents less than 0.4% of the number of observations, scarce
data is not an issue when dealing with this set.

2. Brazil (BBCE): The trading on the futures market of Brazil’s power
sector is really incipient. Changes have been discussed over the last few
years, such as incorporating a short-term price with higher granularity
and the availability of financial contracts. Still, the market, for now,
remains with low liquidity. This implies a considerable amount of missing
data, especially for long term settlements, illustrated in our results. The
data set has M+1,...,M+6,Q+1, and Q+2 assets from 2018 to 2019, and,
instead of closing prices, we use the median as a metric to calculate the
corresponding daily prices.

The platform for forward electricity trading in Brazil, referred to as
BBCE, deals with centralized and decentralized agreements. In the latter,
agents define their prices and quantities outside of the platform but use
their standardized contracts to delineate the negotiation formally. The prices
obtained by the decentralized transactions usually come with a considerable
amount of outliers and, thus, they were disregarded in our study.

Recalling the mathematical definition of elementary forward prices in
(3-4), to perform our estimation procedure, we must first specify their structure
besides the residuals. For the following results, seasonality on the delivery date
was included through sine and cosine functions, specifically a truncated Fourier
series with only one harmonic. We’ve chosen this approach as it’s a smooth
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approximation of the monthly seasonality that would be obtained by dummy
variables. This also directly impacts the forward curve shape, which otherwise
would have notorious level shifts between months. Mathematically:

ft,j = µ+ βsinsin

[
2π(t+ j)

365

]

+ βcoscos

[
2π(t+ j)

365

]
+ ε(t, j), ∀t ∈ T ,∀j ∈ J (5-1)

Consequently:

xt,j =
1 sin

2π(t+ j)
365

 cos
2π(t+ j)

365


T

(5-2)

β =
[
µ βsin βcos

]T
(5-3)

For simplification, the discount rate r = 0. This entails in Jt,i being equal
to the swap’s i duration in days and arbitrage-free prices the the average of
elementary prices defined on its delivery period.

5.1
Arbitrage Level Analysis

Our estimation procedure’s first step consisted of calculating the
arbitrage-free swap prices (Yt,i) and filtering contracts with arbitrage levels
higher than a pre-defined threshold. To give a sensibility on the arbitrage val-
ues observed on both power markets, Fig. 5.1 and 5.2 show the histogram of
ζt,i for all trading dates t and swaps i for NordPool and BBCE, respectively.

The difference between the arbitrage range of the two markets is clear.
While the highest arbitrage detected in NordPool was 0.98e/MWh, in BBCE,
the maximum value was 21.6R$/MWh (≈ 3.4e/MWh on the current quote).
This is a direct consequence of the market’s robustness since the Nordic
electricity market has more liquidity, and the Brazilian is not yet consolidated.
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Figure 5.1: Histogram of arbitrage levels in the Nordic power market.

Figure 5.2: Histogram of arbitrage levels in the Brazilian power market.

One interesting and somehow obvious statement is that arbitrage levels
different from zero are only observed on completely overlapped contracts. To
illustrate, Fig. 5.3 shows the composition between the quarterly and three
monthly swaps on August 1st of 2018, the day with the highest levels of
arbitrage for the Brazilian data set.
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Figure 5.3: Contracts with the highest arbitrage on the Brazilian’s forward
market.

Approximately each third of a quarterly swap’s delivery period is over-
lapped with a monthly contract, so it is correct to expect the former’s price
to be essentially an average of the monthly assets. Looking at Fig. 5.3, we
can readily conclude that this is unfeasible for the trading day under analysis,
as the monthly prices are all lower than the quarterly one. This is reflected
in their absolute arbitrage values, which were all around 21.6R$/MWh. One
could argue why don’t just cancel the arbitrage of monthly contracts and keep
only the quarterly with a value different from zero and higher than 21.6R$.
This impossibility is a consequence of the algorithm presented in Chapter 4.1,
which aims to minimize the maximum arbitrage level on a date t and, as a
solution, have a not null arbitrage associated with all the overlapped swaps.
The resulting arbitrage-free prices are presented in Fig. 5.4.
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Figure 5.4: Contracts with the highest arbitrage on the Brazilian’s forward
market and their arbitrage-free prices.

As mentioned before, missing data is a reality when analyzing the
Brazilian’s future market. Another observed arrangement between overlapped
contracts is similar to those presented in Fig. 5.3 and 5.4, but with one of the
monthly swaps being unavailable. If it occurs, the elementary forward prices
that would compose the missing asset could be determined to make the others’
arbitrage equal to zero. This is a limitation of our outlier detection procedure,
as abnormal prices can be identified only if their delivery period is wholly
overlapped with other settlements.

Finally, the arbitrage threshold acceptable for the Nordic market was
1e/MWh, which means all negotiations remained on the next estimation steps.
At first, we’ve considered an arbitrage limit of 1R$/MWh to filter the Brazilian
data set. However, this would exclude 11.7% of the available prices. Thus,
we’ve increased this threshold to 2R$/MWh, and then only 3.7% of traded
swaps were disregarded.

5.2
Elementary Contracts Estimation

After calculating the sets of arbitrage-free prices, we proceed to the
elementary forward estimation. First, the coefficients β were obtained by
minimizing the adjustment term in (4-8). We used a trigonometric function
for modeling the seasonality on elementary forward. In contrast, using dummy
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variables accounts mostly for shifts in price levels between months [18], and
this unnatural non-smooth variation is reflected on the elementary forward
curve.

Both Brazilian and Nordic power sectors have hydro-dominant power
systems. Therefore, their power prices are lower when higher inflow levels are
observed, which occurs in the summer due to rainfall and melting seasons,
respectively. Because of their geographic localization, reduced prices are de-
tected in opposite months of the year. Fig. 5.5 shows the normalized values of
the estimated trigonometric function for the markets under analysis.

Figure 5.5: Normalized seasonality functions.

With the vector β fixed, we followed to the maximum smoothness
criterion on the residuals. In the last stage, the problem (4-9)-(4-10) was solved
for the Nordic data set, while the addition of time-dependency was made to
address the scarcity of data from the Brazilian’s forward market. As the two
objectives in (4-11) might be on different scales, depending on the values of
λ1 and λ2, the scaled objective would always be prioritized if its weight is not
small enough. Therefore, before solving the bi-objective optimization, we’ve
calculated the objective function values of two optimization problems that
maximize the smoothness in time and maturity, separately. Then λ1 and λ2 are
normalized by the total curvature obtained in maturity and time, respectively.
Now, any pair of weighting parameters correctly reflects the specified priority
relationship.
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Regardless of whether the second smoothing objective is included, con-
straints (4-10) and (4-12) guarantees that the elementary forward contracts
perfectly recover the available arbitrage-free prices. Nevertheless, to exemplify
the bi-objective formulation’s impact on the estimation of missing prices, we
analyze the trading date May 2nd of 2018, from the BBCE forward market. On
this day, only the M+1 swap, which is equivalent to the product JUN/2018,
was negotiated. If the maximum smoothness criterion was applied just on the
maturity dimension, the residuals εt,j for j > ht,i + ∆Tt,i, with i being the
settled contract JUN/2018, would be determined only by the curvature mini-
mization in j, since there are no prices to base them on. The optimal solution
would then be maintaining the final slope of the residuals correspondent to the
M+1 price, as shown in Fig. 5.6. Analogous arguments can be made on other
trading days of the Brazilian set, when alternative prices are unavailable due
to the market’s low liquidity.

Figure 5.6: Estimated residuals on March 2nd 2018 without maximum smooth-
ness criterion in time.

In contrast, the bi-objective smoothing process doesn’t allow the residuals
to differ too much from those on days close to each other. Hence, even though
only the M+1 price is available on May 2nd of 2018, the remaining maturities
will be influenced by prices settled on other trading days. This impact is shown
in Fig. 5.7.
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Figure 5.7: Estimated residuals on March 2nd 2018 with maximum smoothness
criterion in time.

To understand how this reflects in the time series built by calculating the
missing swaps with equation (4-5), we show in Fig. 5.8 - Fig. 5.15 the resulted
prices for all time series from BBCE, with and without the smoothing in time
dimension. It is notorious how this approach is essential to reduce the noise
level of the estimated missing prices and promotes a more reasonable result.
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5.8(a): Smoothing only in maturity.

5.8(b): Smoothing in time and maturity.

Figure 5.8: M+1 arbitrage-free swaps from BBCE.
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5.9(a): Smoothing only in maturity.

5.9(b): Smoothing in time and maturity.

Figure 5.9: M+2 arbitrage-free swaps from BBCE.
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5.10(a): Smoothing only in maturity.

5.10(b): Smoothing in time and maturity.

Figure 5.10: M+3 arbitrage-free swaps from BBCE.
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5.11(a): Smoothing only in maturity.

5.11(b): Smoothing in time and maturity.

Figure 5.11: M+4 arbitrage-free swaps from BBCE.
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5.12(a): Smoothing only in maturity.

5.12(b): Smoothing in time and maturity.

Figure 5.12: M+5 arbitrage-free swaps from BBCE.
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5.13(a): Smoothing only in maturity.

5.13(b): Smoothing in time and maturity.

Figure 5.13: M+6 arbitrage-free swaps from BBCE.
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5.14(a): Smoothing only in maturity.

5.14(b): Smoothing in time and maturity.

Figure 5.14: Q+1 arbitrage-free swaps from BBCE.
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5.15(a): Smoothing only in maturity.

5.15(b): Smoothing in time and maturity.

Figure 5.15: Q+2 arbitrage-free swaps from BBCE.

Finally, we illustrate in Fig. 5.16 and Fig. 5.17 the continuous forward
curves of a specific trading date from NordPool and BBCE, respectively, and
the arbitrage-free prices for both days.
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Figure 5.16: Continuous forward curve and arbitrage-free swaps from Nord-
Pool.

Figure 5.17: Continuous forward curve and arbitrage-free swaps from BBCE.
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5.3
Dimensionality Reduction

Our estimation procedure results in two data sets: the first is composed of
the elementary forward prices (ft,j) and the second by their respective residuals
(εt,j). In the context of this study, PCA decomposes the matrix of residuals in
two separate sets: one of time-indexed series, called components, and other of
their factor loadings, which varies with maturity j and represents the weight
of each component on εt,j. To evaluate this approach, we analyze the following
aspects of the PCA outcomes:

1. The number of components necessary to explain a high percentage of the
variance of the residuals. As PCA’s objective is dimensionality reduction,
its use is only reasonable if the number of components is significantly
lower than the number of estimated maturities.

2. Interpretability and generalization of factor loadings. It’s important
to understand how different parts of the curve are affected by each
component. The factor loadings shapes are usually a subject under study,
as in [2] and [10]. The factor loading’s generalization will be discussed
later on in this chapter.

An issue regarding PCA’s performance on the residuals matrix, or even
on the elementary forward prices, if that was the case, is until which maturity
we should consider when obtaining the components. To clarify, assume the
NordPool settlements, with Y+3 being the swaps with the biggest time to
maturity. If a Y+3 is traded on January 1st, for instance, the highest maturity
j that would have its residuals based on some price would be approximately
4 ∗ 365 = 1460 (the first 3 ∗ 365 = 1095 correspond to its time to maturity
and the last 365 days to the delivery period). Now, suppose the same product
is negotiated on December 31st of the same year. The highest maturity would
then reduce to 3 ∗ 365 = 1095, since the Y+3 asset’s maturity decreased in
approximately one year. Visually, this implicates the following behavior on the
residuals matrix.
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Figure 5.18: Maximum maturity reduction between trading days.

The convex set C∗ refers to the maturities, guided by both prices and
smoothness, common to all trading dates. It’s crucial to emphasize that this
shape is an inherent characteristic of the calculated data sets, regardless of
what swaps are settled. The only distinction is when the illustrated breaks
occur. For example, for the Brazilian assets, because the highest time to
maturity and duration is from the Q+2 contracts, the discontinuities arise
when the quarter changes.

For the maturities inside the red triangles, their residuals are guided
solely by the maximum smoothness criterion. The issues related to the curva-
ture minimization only on the maturity dimension have already been high-
lighted. But even the incorporation of the time-dependency might not be
enough in such cases, since its influences are somehow restricted to trading
days close to each other. These conclusions indicate how powerful our frame-
work is to interpolation purposes but limited for extrapolation.

Therefore, PCA was performed on the convex set C∗ of the residuals
matrices from NordPool and BBCE, so the negative impacts of extrapolation
do not interfere with the results. Three components were able to explain 97.4%
(NordPool) and 98.4% (BBCE) of the variance of the residuals. Fig. 5.19 and
5.20 illustrates the computed factor loadings.
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Figure 5.19: First three factor loadings from NordPool residual’s data set.

Figure 5.20: First three factor loadings from BBCE residual’s data set.

The first two factors found on both sets are well-known in the literature:
the level factor represents changes on a constant rate across maturities, while
the slope or steepness exhibit opposite signals between the curve’s short and
long end. Furthermore, the third factor of NordPool still maintains a seasonal
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structure. In contrast, for BBCE, another traditional factor, referred to as
curvature, was observed, where the short and long end of the curve have the
same signal, yet the middle presents an opposite one.

The percentage of explained variance in our study was above of what was
found in other studies regarding electricity forward curve modeling. We believe
this is mainly because we perform PCA on the residuals, instead of directly on
the elementary forward prices. Fig. 5.21 and 5.22 presents the correspondent
extracted components.

Figure 5.21: Components from the NordPool data set. The ADF-Test was not
able to reject the null hypothesis of existing a unit root (10%, 1%, 10% levels
of significance, for each component, respectively).
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Figure 5.22: Components from the BBCE data set. The ADF-Test was not able
to reject the null hypothesis of existing a unit root for the first two components
(5% and 1% levels of significance, respectively). In contrast, the null hypothesis
was rejected for the third component.

As the PCA was performed under a truncated data set, the weight’s
values wj,k are defined just for the maturities j of residuals εt,j ∈ C∗.
Hence, because we may be interested in extend the use of our structural
model for predicting purposes (which will be discussed in Chapter 7), and
predicting swap prices composed by higher maturities than those considered
is a reality, we must extrapolate the factor loadings. When forecasting, the
factor loading’s generalization plays an important role. By generalization, we
mean that they shouldn’t have any remaining structure, and therefore, their
parametric representations are more straightforward and stable in some sense.
Consequently, the seasonal factor from the NordPool data set was disregarded
in this stage. The remaining seasonal behavior should be addressed by updating
the structure imposed on the elementary forward contracts. Its presence
indicates that probably another periodic pattern has not yet been disclosed
by (5-1). Adding more harmonics could assist in this process. Nevertheless,
the level and slope factors still explain a total of 96.3% of residuals variance,
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which is also an impressive result.
We’ve fitted three parametric representations for the level, slope, and

curvature factors, respectively, allowing us to obtain the weight’s values for
any desired maturity.

Level : w(j) = a+ bj (5-4)

Slope : w(j) = a((1− c) exp (−bj) + c) (5-5)

Curvature : w(j) = a((1− c) exp (−bj) + c)

+ dj + ej2 + f (5-6)

The level is easily described by a first-order polynomial equation, while
the slope has an exponential decay to account for the empirical evidence of
volatility falling sharply with maturity in the short end and stabilizing in the
long end. This attribute, as well as its parametric representation, was discussed
in [2]. Finally, the curvature factor is a sum of the previous exponential decay
and a second-order polynomial equation to address the concavity. Fig. 5.23
and 5.24 illustrates the fitted factors for NordPool and BBCE, respectively.

Figure 5.23: Fitted level and slope factors for NordPool.
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Figure 5.24: Fitted level, slope and curvature factors for BBCE.

To confirm that using low dimensional data weighted by the approxi-
mated factor loadings recovers the dynamics of the arbitrage-free swap prices,
we calculate the residuals as:

εt,j = µj +
∑
k∈K

wj,kct,k, ∀t ∈ T ,∀j ∈ J (5-7)

Where wj,k is the weight (factor loading) of component k ∈ K on the
residual of maturity j and µj is the mean of εt,j, for a fixed j ∈ J . Then,
arbitrage-free swap prices are computed by (4-5). Tables 5.1 and 5.2 shows the
MAPE values resulted from the comparison between the arbitrage-free swap
prices and the ones recovered by the principal components approximation.
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Table 5.1: MAPE NordPool (2 components)
MAPE NordPool

(%)
Contracts MAPE Contracts MAPE Contracts MAPE

M+1 3.8 Q+1 2.7 Q+7 2.9
M+2 4.0 Q+2 3.1 Q+8 3.1
M+3 3.6 Q+3 3.1 Y+1 1.1
M+4 3.8 Q+4 3.3 Y+2 1.0
M+5 3.7 Q+5 3.0 Y+3 3.9
M+6 3.8 Q+6 2.7

Table 5.2: MAPE BBCE (3 components)
MAPE BBCE

(%)
Contracts MAPE

M+1 3.3
M+2 3.4
M+3 3.9
M+4 3.7
M+5 2.1
M+6 6.1
Q+1 2.2
Q+2 5.8

Next, we illustrate the recovered prices for contracts with different
duration from NordPool and BBCE, respectively.
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Figure 5.25: M+3 arbitrage-free swaps from NordPool recovered with 2 com-
ponents.

Figure 5.26: Q+1 arbitrage-free swaps from NordPool recovered with 2 com-
ponents.
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Figure 5.27: Y+2 arbitrage-free swaps from NordPool recovered with 2 com-
ponents.

Figure 5.28: M+1 arbitrage-free swaps from BBCE recovered with 3 compo-
nents.
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Figure 5.29: Q+1 arbitrage-free swaps from BBCE recovered with 3 compo-
nents.

The MAPE values found in both markets are coherent with the per-
centage of the residuals variability explained by the extracted components.
For BBCE, the swaps M+6 and Q+2 presented the highest MAPE values.
Since there are high levels of missing data, the MAPE is computed only when
arbitrage-free prices are available for comparison. Therefore, this might impact
the metric values found in the Brazilian market. Nevertheless, the results pre-
sented here corroborate with the capacity of the low-dimensional data derived
from PCA to recover the arbitrage-free swap prices accurately.
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6
Conclusions

This study presents a semiparametric structural model to extract contin-
uous forward curves of electricity, composed of elementary forward contracts.
The estimation procedure consists of a hierarchical optimization problem where
the first stage acknowledges the arbitrage opportunities on power markets due
to overlapped contracts and allows some outlier detection. Then, the param-
eters of the seasonality curve (or any other structure imposed on elementary
prices) are estimated through OLS, followed by the computation of the forward
curve. In this stage, the maximum smoothness criterion can be applied on the
maturity and time dimension to treat scarce data sets from low-liquidity mar-
kets. This has shown to be especially relevant in the Brazilian system. Results
highlighted the differences between the Brazilian and Nordic power markets in
terms of arbitrage levels. The arbitrage identification procedure was also used
to detect outliers and to compute arbitrage-free prices. It is important to high-
light that our proposed semi-parametric structure for the elementary forward
prices allows a more efficient dimensionality reduction. We show that more
than 97% of the residuals variability can be explained by only three principal
components for both the Brazilian (BBCE), 98.4%, and Nordic (NordPool),
97.4%, electricity markets. Based on these results, we show that even under a
reduced dimension we can accurately reconstruct all time series.
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7
Next Steps

This chapter highlights the main next steps regarding the semiparametric
structural model developed in this study. The more immediate one would be
its use for forecasting purposes. To better understand how this can be done,
we define next a general probabilistic forecasting scheme and present some
preliminary results.

7.1
Probabilistic Forecasting

If we look back into our reduced-form model in (4-5), it’s easy to verify
that, to generate probabilistic forecasts of the arbitrage-free swap prices, we
must simulate the residuals εt,j, as all the structure in X t,iβ is deterministic
after the estimation procedure. Here, an observation is made regarding the
consideration exogenous variables. Its scenarios would have been calculated
outside our framework, by another statistical model, and used as an input.
Thus, when looking to equation (4-5), they can be treated in a deterministic
manner.

Therefore, instead of performing PCA directly on an optimized set build
by the combination of elementary contracts as [2] and [10], we’ve reduced the
dimension of the residuals εt,j. An advantage of this approach is similar to
applying the maximum smoothness criterion on the residuals: the structure
imposed on the elementary forward contracts remains static.

Conducting PCA on the residuals reduces the amount of time series
to be modeled to obtain probabilistic forecasts for Yt,i. If we disregarded
this step, scenarios for each maturity j ∈ J should be generated. For daily
elementary contracts, the number of maturities can be much greater than a
hundred, making this task impracticable. Figure 7.1 illustrates our complete
probabilistic forecasting scheme.
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Figure 7.1: Probabilistic forecasting scheme.

The probabilistic forecast scheme’s first step is computing the elementary
forward contracts and their respective residuals by conducting the estimation
procedure developed in Chapter 4. Then, we perform PCA in the data matrix
composed by the residuals for each date and maturity and obtain orthogonal
time series, called components, and their associated factor loading’s (weights).
We have already discussed the ability of our framework in explaining high
percentages of the total variance of the data with well-behaved factor loadings.

As can be observed in Figure 7.1, the probabilistic forecast model has as
input the components resulted from PCA. These time series are uncorrelated,
which means univariate models can fit each of them separately. As an initial
study in our forecasting procedure, we’ve estimated an AR(1)-GARCH(1,1) for
the components of NordPool, which is a discussed structure on the real-time
and day-ahead price prediction.

After achieving all the previous stages, the scenarios for the arbitrage-free
prices are produced by following the same steps in the opposite order. Figure
7.2 illustrates the procedure with more details.
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Figure 7.2: Calculation of arbitrage-free prices scenarios.

Let ct,k be the value of the extracted component k ∈ K on trading date
t. Then:

ct,k = α + φct−1,k + ξt,k, ∀t ∈ T ,∀k ∈ K (7-1)

With ξt,k ∼ GARCH(1,1):

ξt,k = µ+ σt,kzt,k, ∀t ∈ T ,∀k ∈ K (7-2)

σ2
t,k = ω + α(ξt,k − µ)2 + βσ2

t−1,k, ∀t ∈ T ,∀k ∈ K (7-3)

where zt,k ∼ N(0, 1). After estimating all parameters of (7-1)-(7-3), we
can simulate the residuals ξt,k iteratively through the equations (7-2)-(7-3). In
addition, the components scenarios are calculated through (7-1) by replacing
ξt,k with the results of the previous simulation.

From the PCA formulation, we write the residuals εt,j as a linear
combination of the extracted components, weighted by their factor loadings:

εt,j = µj +
∑
k∈K

wj,kct,k, ∀t ∈ T ,∀j ∈ J (7-4)

Where wj,k is the weight of component k ∈ K on the residual of maturity
j and µj is the mean of εt,j, for a fixed j ∈ J . The scenarios for εt,j are a result
of (7-4) with the simulation of components being replaced in ct,k. Finally,
scenarios of arbitrage-free prices are computed with (4-5).

To evaluate our probabilistic forecasting model, we’ve performed 100
iterations of the scheme in Fig. 7.1 on a rolling horizon strategy. In each
iteration, we’ve generated 1000 prices scenarios, up to 20 steps ahead, and
computed the probabilistic calibration metric [20], that reflects the consistency
between the forecast’s distribution and the observations. For example, we
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expect that 95% of the time, the observed prices are lower than the quantile of
95%, and so forth. It’s a property that connects the forecasts and materialized
events and translates the prediction model’s reliability.

To investigate the prediction model reliability, we show, in Tables 7.1, 7.2
and 7.3, the percentage of iterations where the observed prices were below the
quantiles specified in the first column, for the monthly, quarterly and yearly
swaps. Thus, if a probabilistic forecast is perfectly calibrated, the values on
each line of all tables would coincide with the correspondent quantiles.
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Table 7.1: Probabilistic calibration for monthly swaps from NordPool
Probabilistic Calibration

(%)
Monthly Contracts
1 STEP AHEAD

Quantiles M+1 M+2 M+3 M+4 M+5 M+6
7.5 13 13 12 8 2 8

17.5 16 16 12 9 4 11
27.5 21 20 14 10 4 14
37.5 24 21 18 10 6 17
47.5 26 22 22 12 6 19
57.5 29 23 24 13 7 21
67.5 31 28 26 14 7 22
77.5 33 31 29 15 7 22
87.5 41 37 33 17 9 24
97.5 54 45 39 30 12 30

5 STEPS AHEAD
Quantiles M+1 M+2 M+3 M+4 M+5 M+6

7.5 9 9 6 3 2 5
17.5 15 13 8 5 2 5
27.5 19 15 12 8 3 5
37.5 24 17 13 9 5 6
47.5 26 18 15 11 5 6
57.5 29 22 18 12 7 9
67.5 33 27 23 14 9 14
77.5 38 28 24 18 13 18
87.5 45 36 30 22 15 20
97.5 54 41 34 30 21 29

20 STEPS AHEAD
Quantiles M+1 M+2 M+3 M+4 M+5 M+6

7.5 3 0 0 0 0 0
17.5 3 1 2 0 0 0
27.5 5 2 2 0 0 1
37.5 5 2 3 0 0 2
47.5 7 2 4 0 0 2
57.5 7 3 4 1 0 2
67.5 7 4 5 1 0 4
77.5 8 6 6 2 0 4
87.5 11 12 9 3 1 8
97.5 22 23 11 10 6 17
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Table 7.2: Probabilistic calibration for quarterly swaps from NordPool
Probabilistic Calibration

(%)
Quarterly Contracts

1 STEP AHEAD
Quantiles Q+1 Q+2 Q+3 Q+4 Q+5 Q+6 Q+7 Q+8

7.5 9 3 63 69 43 1 73 76
17.5 11 5 66 75 45 4 83 85
27.5 12 6 69 78 46 4 87 87
37.5 15 8 73 82 47 5 89 92
47.5 15 12 76 85 47 7 91 92
57.5 18 14 77 88 47 8 93 93
67.5 21 14 78 91 50 15 95 96
77.5 22 16 80 91 51 20 97 97
87.5 27 18 84 92 51 31 98 99
97.5 39 28 86 96 56 54 99 100

5 STEPS AHEAD
Quantiles Q+1 Q+2 Q+3 Q+4 Q+5 Q+6 Q+7 Q+8

7.5 6 1 33 31 11 1 41 34
17.5 10 3 40 37 16 1 53 39
27.5 11 6 47 41 21 2 55 52
37.5 14 6 48 46 26 5 59 62
47.5 18 9 53 50 27 8 67 71
57.5 22 10 54 55 30 10 72 76
67.5 22 12 56 58 31 15 73 79
77.5 26 12 58 67 31 20 77 83
87.5 30 18 67 75 34 30 79 91
97.5 38 36 75 86 53 51 91 97

20 STEPS AHEAD
Quantiles Q+1 Q+2 Q+3 Q+4 Q+5 Q+6 Q+7 Q+8

7.5 0 0 0 6 0 0 8 2
17.5 2 0 5 7 0 0 18 7
27.5 3 0 14 7 0 0 20 10
37.5 3 0 18 8 0 0 25 11
47.5 4 0 21 11 0 0 29 14
57.5 5 0 29 13 0 0 32 16
67.5 6 1 32 18 0 0 38 17
77.5 7 2 34 21 3 1 43 24
87.5 9 3 39 25 4 2 49 35
97.5 12 22 45 39 11 18 61 60
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Table 7.3: Probabilistic calibration for yearly swaps from NordPool
Probabilistic Calibration

(%)
Yearly Contracts
1 STEP AHEAD

Quantiles Y+1 Y+2 Y+3
7.5 34 38 8

17.5 42 60 21
27.5 44 69 28
37.5 48 74 30
47.5 54 79 33
57.5 57 82 35
67.5 62 84 41
77.5 65 87 43
87.5 72 89 48
97.5 85 97 61

5 STEPS AHEAD
Quantiles Y+1 Y+2 Y+3

7.5 6 6 4
17.5 7 14 9
27.5 15 24 13
37.5 21 37 19
47.5 24 40 24
57.5 28 46 27
67.5 33 49 33
77.5 37 53 34
87.5 47 60 36
97.5 67 80 53

20 STEPS AHEAD
Quantiles Y+1 Y+2 Y+3

7.5 0 0 0
17.5 0 0 0
27.5 0 0 0
37.5 0 0 1
47.5 1.0 0 1
57.5 2.0 2 4
67.5 3.0 3 5
77.5 3.0 7 9
87.5 9.1 16 12
97.5 30.3 37 39
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It is easy to notice that modeling the components with an AR(1)-
GARCH(1,1) framework did not produce good probabilistic calibration met-
rics. Nevertheless, the dynamics of some swap series could be recovered by our
forecasting procedure. Fig. 7.3 and 7.4 illustrates the scenarios for the Q+7
and Y+2 time series for a window of the rolling horizon.

Figure 7.3: Simulation of Q+7 NordPool prices.

Figure 7.4: Simulation of Y+2 NordPool prices.
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It’s important to recognize that perhaps the third component’s disposal
may have negatively impacted the results found, which means that the factors
that explain most of the total variance are not necessarily the most suitable
for forecasting.

7.2
Considerations

After observing the discussions and results presented in this document,
some subsequent evaluations could leverage the proposed framework’s poten-
tial.

1. Add explanatory variables into the structural model: Some straightfor-
ward variables would be spot prices and/or reservoir and inflow levels, for
hydro-dominant power systems. Nevertheless, understanding how those
variables impact different maturities would be essential to define their
appropriate parametric relation with elementary prices.

2. Define other seasonal patterns to remove the remaining structure in the
component on the NordPool data set. Also, it could be interesting to
differ weekdays from weekends/holidays.

3. Recognize how each component impacts the distinct parts of the forward
curve. A derivation of PCA, called Sparse Principal Component Analysis,
could help in this process since it aims to find sparse factors. The
interpretability of the factors is even more straightforward since the
components that affect each maturity would have non-zero weights.

4. Given a parametric form for the factor loadings, it is possible to formulate
an optimization problem that incorporates all the concepts and equations
developed in Chapter 2 and the component extraction simultaneously.
Thus, the residuals of the elementary forward contracts must be written
as a linear combination between components and factor loadings. A
constraint guaranteeing orthogonality among components is also needed.

5. Define a metric to evaluate the impact of different values of λ1 and λ2

on the estimation process.

6. Test different forecasting models to improve the results presented before
in this chapter. A possibility would be the class of Score Driven Models
[21], which gives high flexibility when choosing the most suitable distri-
bution and how it evolves through time.

DBD
PUC-Rio - Certificação Digital Nº 1821331/CA



A
Nomenclature

This section presents the nomenclature and symbols used in this work.

Sets

T Set of trading dates T = {t0, t1, . . . , T}

J Set of elementary maturity in days J = {1, 2, . . . , J}

Nt Set of negotiated swaps on trading date t ∈ T

K Set of components indexes

Constants

Ft,i Price of the swap i on trading date t

ht,i Time to maturity of the swap i on trading date t

∆Tt,i Duration of the swap i on trading date t

r Discount rate

wj,k Factor loading of component k for maturity j

Decision Variables

ft,j Price of the daily elementary forward contract of maturity j on
trading date t

εt,j Residual of the elementary forward contract of maturity j on
trading date t

∆t,i Net present value of the arbitrage level of the swap i traded on
date t

ηt,i Adjustment term
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ζt,i Arbitrage level in prices of the swap i traded on date t

β Vector of coefficients of xt,j

ct,k Component k in the trading date t

Vectors

xt,j Vector that defines the structure imposed on the elementary
forward contract of maturity j on trading date t

ζt Vector composed by the arbitrage levels on the trading date t

Functions

ε(t, j) Representation of the elementary forward contracts residuals as
a function of time and maturity
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B
Descriptive Statistics

This section presents some descriptive statistics of the swap price time-
series from NordPool and BBCE.

Table B.1: Descriptive Statistics from NordPool time-series
NordPool

Series Missing Data (%) Mean Minimum Maximum Std
M+1 0 31.3 9.9 59.4 9.2
M+2 0 31.2 13.7 58.85 9.1
M+3 0 31.1 14.38 59.15 9.0
M+4 0 31.1 14.05 59 8.9
M+5 0 31.0 12 61 8.6
M+6 0 30.7 13 60.05 8.3
Q+1 0 31.1 13.82 58.7 8.8
Q+2 0 30.6 13.3 57.45 8.0
Q+3 0 29.6 12.63 49.5 6.8
Q+4 0 29.1 16.63 45.55 6.4
Q+5 0 28.7 14.3 47.2 6.8
Q+6 0 28.3 13.1 43 6.6
Q+7 0 27.7 15.1 41.75 6.0
Q+8 0 27.6 15.95 43.05 6.1
Y+1 0.4 29.2 16.3 47.5 6.2
Y+2 0 27.6 16.25 39.43 5.4
Y+3 0 27.1 16.15 38.25 5.1

DBD
PUC-Rio - Certificação Digital Nº 1821331/CA



Appendix B. Descriptive Statistics 72

Table B.2: Descriptive Statistics from BBCE time-series
BBCE

Series Missing Data (%) Mean Minimum Maximum Std
M+1 1.01 238.7 57.0 485.0 103.8
M+2 8.06 233.9 79.0 448.0 82.8
M+3 35.69 230.5 98.0 397.0 73.5
M+4 61.29 219.9 111.8 340.0 60.0
M+5 83.67 217.6 135.0 350.0 50.7
M+6 93.55 202.9 150.0 295.0 32.0
Q+1 29.44 229.5 99.3 394.0 67.0
Q+2 53.83 209.0 142.5 358.0 53.1
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